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Quasi-Babinet principle in dielectric resonators and Mie voids
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Advancing resonant nanophotonics requires novel building blocks. Recently, cavities in high-index dielectrics
have been shown to resonantly confine light inside a lower-index region. These so-called Mie voids represent a
counterpart to solid high-index dielectric Mie resonators, offering novel functionality such as resonant behavior
in the ultraviolet spectral region. However, the well-known and highly useful Babinet’s principle, which relates
the scattering of solid and inverse structures, is not strictly applicable for this dielectric case as it is only valid
for infinitesimally thin perfect electric conductors. Here, we show that Babinet’s principle can be generalized
to dielectric and magnetodielectric systems within certain boundaries, which we refer to as the quasi-Babinet
principle and demonstrate for spherical and more generically shaped Mie resonators. Limitations arise due to
geometry-dependent terms as well as material frequency dispersion and losses. Thus, our work not only offers
deeper physical insight into the working mechanism of these systems but also establishes simple design rules for
constructing dielectric resonators with complex functionalities from their complementary counterparts.
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I. INTRODUCTION

Babinet’s principle is a fundamental concept in electro-
magnetism that relates the scattering properties of thin perfect
metallic conductors to complementary apertures in metal
sheets [1]. In optics, it applies to diffraction patterns from
radiation passing through complementary metallic screens,
exchanging transmission and reflection spectra [2]. The gen-
eralized form of Babinet’s principle approximates the relation
between transmission and reflection from flat absorbing scat-
terers and complementary apertures in absorbing media [3].

In the early 2000s, Babinet’s principle was reformulated
as a connection between the electric and magnetic fields of
transverse electric (TE) and transverse magnetic (TM) modes
of normal and inverted plasmonic structures, respectively
[4,5]. In this form, it was applied for the design of plas-
monic metamaterials and metasurfaces [6–9], leading to the
concept of self-complementary metasurfaces [10–16], double
negative index materials [17], manipulating polarization [18],
enabling topological properties [19,20], wavefront control
[21], filtering [22], coherent perfect absorption [23], ob-
serving plasmonic electromagnetically induced transparency
[24,25], magnetic near-field imaging [26], and simultaneously
realizing magnetic and electric hotspots [27].

Dielectric metaphotonics emerged recently as a promis-
ing alternative to plasmonics, featuring high-index dielectric
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and semiconductor nanoresonators supporting geometrical
Mie resonances as building blocks of photonic structures
[28,29]. Mie resonances can be engineered in individual
nanoresonators or their arrays in the form of metasurfaces
and photonic crystal slabs [30], manifesting themselves as
local and nonlocal modes, associated with bound states in
the continuum [31,32], anapoles [33,34], and directional
scattering [35].

Very recently, the concept of Mie voids was proposed in
dielectric metaphotonics [36]. Counterintuitively, it was found
that low-index materials inside a high-index environment,
such as air voids in silicon or van der Waals 2D materials [37],
can support Mie resonances in the infrared, visible, and even
ultraviolet range due to confinement of light inside the air re-
gion, generalizing earlier works related to similar phenomena
in low-index structures [38–41]. It was also shown that such
Mie void modes are robust to geometrical and environmental
changes, so that these modes can be realized experimentally
by bringing the voids to the surface of thick silicon wafers.
Unlike photonic crystal slabs and membranes relying on col-
lective lattice resonances [42], even single Mie voids can
function as individual pixels with highly localized resonant
properties. In particular, voids exhibit pronounced scatter-
ing features, generating bright, high-resolution naturalistic
colors [36].

In this Letter, we study the similarities and differences of
Mie modes in voids and high-index nanoresonators. We reveal
that for spherical nanoparticles, a quasi-Babinet principle can
be established, connecting the electric and magnetic fields
of a structure and its complementary counterpart, as well
as their resonant frequencies and quality factors. The new
principle holds quantitatively for voids (nanoparticles) with
size larger than the wavelength, and approximately for sub-
wavelength voids (nanoparticles). In structures with magnetic
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material response, the principle establishes a correspondence
between resonant response of magnetodielectric particles and
epsilon- and mu-near-zero particles. The quasi-Babinet princi-
ple remains approximately valid for nonspherical geometries,
except in the vicinity of an avoided resonance crossing. Fi-
nally, we calculate the mode parameters for realistic dielectric
materials with material losses in the near-infrared, visible, and
ultraviolet spectral range, and demonstrate that the Babinet’s
principle is not applicable in the regions of high absorption
and high dispersion, as intuitively expected.

Whenever applicable, the quasi-Babinet principle has re-
markable similarities to the established Babinet principle
between metallic films and their inverse counterparts: The
resonance frequencies can be clearly mapped from one to the
other, while the role of incident polarizations and resonant
near fields is swapped. The former turns out to be very use-
ful in determining the resonance frequencies of Mie voids.
Although the task to find resonances in inverse structures
seems to be straight-forward in numerical calculations, we
have figured out that, without a good guess value as a start,
it is challenging to obtain resonances where the fields are
localized inside the voids. Most numerical schemes seem to
preferentially find resonances with fields localized in the high-
index surrounding. Moreover, it is important to highlight that
in this work, we consider an open resonator. As a result, the
established concepts of bound modes is no longer applicable,
requiring a reformulation of the theory [43].

Yet, there are distinct differences between the quasi-
Babinet principle and its established counterpart for metals:
For the quasi-Babinet principle, the relation between reso-
nances in the normal and inverse system is not given by the
vacuum wavenumber, but by the wavenumber in the resonator
medium, i.e., low-index medium for the voids and high-index
medium in normal resonators. Equivalently, one can scale the
size of the void by the ratio between high and low index
to work at the same vacuum wavenumbers. Moreover, the
geometrical relation between normal and inverse structure is
truly three-dimensional for the quasi-Babinet principle. For
the transition from a normal to the inverse structure consisting
of two materials, this means that we need to keep the geom-
etry same and swap the media, i.e., a low index becomes a
high index and vice versa. In contrast, the Babinet principle
for metals requires exchanging materials only in an ideally
infinitely thin layer.

II. SPHERICAL GEOMETRY

As an analytically solvable example, we consider two
complementary dielectric structures schematically shown in
Figs. 1(a) and 1(b): a high-index sphere with internal refrac-
tive index ni immersed in a low-index host medium with the
refractive index ne � ni and a low-index void in a high-index
host medium with ne � ni. We study the applicability of
Babinet’s principle for these two scenarios. In the following,
we use the term “normal structures” referring to dielectric
particles, and “inverse structures” when referring to the voids
embedded in a dielectric medium.

We start by calculating the plane wave total and par-
tial multipolar scattering cross-sections for a normal sphere
with ni = 4, ne = 1, R = 75 nm, and an inverse sphere with
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FIG. 1. Quasi-Babinet principle establishes a correspondence be-
tween mode properties of (a) a high-index dielectric structure and
(b) a low-index void in high-index dielectric host medium as its
inverse system. This principle connects modes of orthogonal po-
larizations, such as a magnetic dipole and an electric dipole Mie
mode with their electric and magnetic fields, E and H (schematically
displayed by blue and red arrows), respectively. (c), (d) Normalized
plane wave scattering efficiency for (c) a spherical particle with ni =
4, ne = 1, R = 75 nm, and (d) a spherical void with ni = 1, ne =
4, R = 300 nm. Partial multipolar scattering components are shown
with colors. Vertical dashed lines denote the resonant wavelengths of
fundamental modes with s = 1 from Figs. 2(a) and 2(c).

ni = 1, ne = 4, R = 300 nm, shown in Figs. 1(c) and 1(d),
respectively. The wavelength range is from 300 to 800 nm,
corresponding to the same range of wavenumbers Re (nik0R),
defined further. Partial electric dipolar (ED), magnetic dipolar
(MD), electric quadrupolar (EQ), and magnetic quadrupolar
(MQ) scattering cross-sections normalized on the sphere ge-
ometrical cross-section are shown with line color. Vertical
dashed lines denote the resonant wavelengths of fundamental
modes, discussed further in Fig. 2. We can see that for normal
structures the scattering peaks correspond to the individual
modes, and their multipolar content matches the scattering
multipoles. For the inverse structure, the total scattering is
smeared out and the multipolar features do not correspond to
the resonant mode positions. The latter effect can be explained
by the effect of strong nonresonant scattering in voids.

Therefore, we approach the problem by investigating the
behavior of the eigenmodes supported by the normal and
inverse structures. Mie theory [36,44] yields the complex
resonant wavenumbers k0 = ω/c for the normal and inverse
cases for TM and TE polarizations, as solutions to the follow-
ing transcendental equations:

TM modes:
ψ ′

l (nik0R)

ψl (nik0R)
= ni

ne

ξ ′
l (nek0R)

ξl (nek0R)
, (1)

TE modes:
ψ ′

l (nik0R)

ψl (nik0R)
= ne

ni

ξ ′
l (nek0R)

ξl (nek0R)
. (2)
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FIG. 2. Demonstration of the quasi-Babinet principle for a high-
index dielectric sphere with ni = 4, ne = 1 and a spherical low-index
void with ni = 1, ne = 4. (a) Mode wavenumber Re (nik0R) vs mode
linewidth −2 Im (nik0R) for l = 1 obtained via solving Eqs. (1) and
(2). (b) Relative error |1 − zls/zana

ls | between the approximate solution
zls of Eqs. (3) and (4) for different orders of approximation and zana

ls

as solutions of Eqs. (1) and (2) for l = 1. (c) Field profiles in normal
and inverse structures for the fundamental MD and ED modes (s = 1,
l = 1, m = 1) labeled in (a) and fundamental MQ and EQ modes
(s = 1, l = 2, m = 1).

Here, l = 1, 2, . . . , is the orbital mode index, and ne and ni are
the refractive indices outside and inside the sphere with radius
R, respectively. The prime denotes derivatives with respect
to the argument, and ψl as well as ξl are the Riccati-Bessel
functions of order l , with ψl (x) = x jl (x) and ξl (x) = xhl (x),
where jl and hl are the spherical Bessel and outgoing spher-
ical Hankel functions, respectively. We note that the modes
of spherical particles are degenerate with respect to the az-
imuthal index m = 0,±1, . . . ,±l .

We can expand the left and right part of Eqs. (1) and (2) in
a series with respect to 1/z for z = nik0R, assuming k0R � 1,
and solve the equation up to a specific order of 1/z. For high-
contrast normal (ne � ni) and high-contrast inverse (ne � ni)
structures, the solutions up to second order are (see Sec. I A
in the SM [45])

zls ≈ z̃l+1,s − βl

z̃l+1,s
∓ i

ni

ne

βl

z̃2
l+1,s

, for

{
TM normal
TE inverse ,

(3)

zls ≈ z̃ls − βl

z̃ls
± i

ni

ne

βl

z̃2
ls

, for

{
TE normal
TM inverse . (4)

Here, s = 1, 2, . . . , is the radial mode index, βl = l (l + 1)/2,
and z̃ls = π (s + (l − 1)/2) − iarctanh(n</n>) as the zeroth
order solution for n< and n> is the lowest and highest refrac-
tive index, respectively. We note the expansion up to z̃ls was
known in the literature [46], but without acknowledging the
similarities between normal and inverse structures.

The comparison of TM (TE) modes of normal structures
and TE (TM) modes of inverse structure reveals that the solu-
tions are identical up to the first order of 1/z. The difference
in resonant wavenumbers of complementary modes is given
by the second-order correction. We denote this approximate
correspondence as the quasi-Babinet principle. As a result
of it, we will show that the modes of the complementary
structures feature very similar resonant wavenumbers, but
different linewidths. For comparison, we show that for a one-
dimensional planar dielectric slab and complementary air slot
slab the exact Babinet principle holds (see Sec. I B in [45,
Sec. I B]).

Next, we evaluate the validity of the quasi-Babinet princi-
ple numerically by comparing solutions zana

ls of Eqs. (1) and
(2) for normal (ni = 4, ne = 1) and inverse (ni = 1, ne = 4)
cases, corresponding to a silicon sphere in air and an air void
in silicon in the near-infrared range, respectively. For solving
the transcendental Eqs. (1) and (2), we used a custom Python
code. Figure 2(a) depicts the mode linewidth with respect
to the real part of resonant wavenumbers for modes with
l = 1 and m = 1 that can be excited with a plane wave. The
difference between the real part of nik0R for normal TE (TM)
and inverse TM (TE) modes is small and decreases with the
increase of the radial mode index s (from left to right). The
difference between the linewidths of complementary modes
is larger, but also decreases with the increase of the radial
mode index. Therefore, the quasi-Babinet principle accuracy
increases with the increase of s.

To quantify the validity of the approximate solutions in
Eqs. (3) and (4), we calculated the relative error |1 − zls/zana

ls |
between the analytical wavenumbers zana

ls and the approximate
zeroth- and second-order solutions zls for both the normal and
inverse cases, shown in Fig. 2(b). The inverse TE modes (red
triangles) exhibits the highest accuracy for the second-order
solution compared to the other cases. We note Fig. 2(b) con-
firms that the zeroth-order solution can be used to predict the
location of the real part of the resonant wavenumbers.

Figure 2(c) displays the absolute value of the electric field
E and magnetic field H for the lowest-order multipolar modes
of the normal and inverse structures with m = 1 normalized
to their maximum values, which are MD and ED modes with
s = 1, l = 1 and MQ and EQ modes with s = 1, l = 2. Close
resemblance between the fields of the normal structure modes
and the corresponding modes of the void structure confirms
the validity of the quasi-Babinet principle.

III. MAGNETODIELECTRIC MATERIALS

We further investigate the validity of the quasi-Babinet
principle for magnetodielectric spherical structures with
nonzero permeability and permittivity contrast (for more de-
tails see SM [45]). In this case, “normal” and “inverse”
structures are defined with respect to the relative values of the
impedance, Zi,e, and refractive index, ni,e, between the internal
and external domains of the resonator.

In our example, we consider two complementary mag-
netodielectric structures: a high-index low-impedance sphere
with ni, Zi inside immersed in a low-index high-impedance
host medium with ne � ni, Ze � Zi, and a low-index high-
impedance void in a high-index low-impedance host medium
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with ne � ni, Ze � Zi. The equations for complex mode fre-
quencies can be written as transcendental equations similar to
Eqs. (1) and (2):

TM modes:
ψ ′

l (nik0R)

ψl (nik0R)
= Ze

Zi

ξ ′
l (nek0R)

ξl (nek0R)
, (5)

TE modes:
ψ ′

l (nik0R)

ψl (nik0R)
= Zi

Ze

ξ ′
l (nek0R)

ξl (nek0R)
. (6)

Following the procedure used to derive Eqs. (3) and (4), we
expand the left and right part of Eqs. (5) and (6) in a series
with respect to 1/z for z = nik0R, assuming k0R � 1, and
solve the equation up to a specific order of 1/z. For high-
contrast normal (ne � ni, Ze � Zi) and high-contrast inverse
(ne � ni, Ze � Zi) structures, the solutions up to second order
are (see Sec. II in the SM [45])

zls ≈ z̃l+1,s − βl

z̃l+1,s
− i

Ze

Zi

μ2
i

μ2
e

βl

z̃2
l+1,s

, for TM normal, (7)

zls ≈ z̃l+1,s − βl

z̃l+1,s
+ i

Ze

Zi

βl

z̃2
l+1,s

, for TE inverse, (8)

zls ≈ z̃ls − βl

z̃ls
+ i

Ze

Zi

μ2
i

μ2
e

βl

z̃2
ls

for TE normal, (9)

zls ≈ z̃ls − βl

z̃ls
− i

Ze

Zi

βl

z̃2
ls

for TM inverse. (10)

Here, μi = niZi, μe = neZe are internal and external
permeabilities, respectively, and z̃ls = π (s + (l − 1)/2) −
iarctanh(Z</Z>) is the zeroth order solution for Z< and Z>

as the lowest and highest impedance, respectively. We can see
that Eqs. (7)–(10) transform to Eqs. (3) and (4) for nonmag-
netic materials with μi = μe = 1.

After establishing the quasi-Babinet principle for magne-
todielectric materials, we compare it with the electromagnetic
duality [47]. We illustrate both transformations in Fig. 3 as
a correspondence between relative permeabilities, μi/μe, and
permittivities, εi/εe, where the latter are given by εi = ni/Zi,
εe = ne/Ze.

The duality principle corresponds to the transformation
Zi → Ze, Ze → Zi. We note that duality provides an exact
TE-TM correspondence via the transformation of Eq. (5) into
Eq. (6) and visa versa. In terms of relative permeabilities and
permittivities, the duality corresponds to

εi

εe
→ μi

μe
,

μi

μe
→ εi

εe
. (11)

The correspondence via electromagnetic duality, Eq. (11), is
shown schematically in Fig. 3(a) with a solid orange line for a
dielectric particle (point A) with εi/εe > 1, μi/μe = 1 and a
magnetic particle (point B) with μi/μe > 1, εi/εe = 1.

The quasi-Babinet principle corresponds to simultaneous
transformations Zi → Ze, Ze → Zi and ni → ne, ne → ni.
As discussed before, the quasi-Babinet principle establishes
an approximate TE-TM correspondence between modes of
normal and inverse structures up to its applicability range. In
terms of relative permeabilities and permittivites, the quasi-
Babinet principle establishes

εi

εe
→

(
εi

εe

)−1

,
μi

μe
→

(
μi

μe

)−1

. (12)

=

=

1
electromagnetic duality

quasi-Babinet principle
quasi-TE-TE and quasi-TM-TM

1

B

C

D

A

ENZ resonant structures
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ENZ
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(a) (b)

(c)

FIG. 3. Electromagnetic duality, quasi-Babinet principle and
epsilon-near-zero and mu-near-zero materials in magneto-dielectric
materials. (a) Correspondence between relative permeabilities and
permittivites of normal and inverse structures via the electromag-
netic duality (solid orange line), the quasi-Babinet principle (dashed
orange line), and their combination giving a quasi- TE-TE and quasi-
TM-TM correspondence (dashed gray line). (b) and (c) Schematic
relation of quasi- TE-TE and quasi-TM-TM correspondence to
(b) epsilon-near-zero (ENZ) and (c) mu-near-zero (MNZ) resonant
structures.

The correspondence via the quasi-Babinet principle, Eq. (12),
is shown schematically in Fig. 3(a) with dashed orange lines
for a dielectric particle (point A) with εi/εe > 1, μi/μe = 1
and a dielectric void (point C) with εi/εe < 1, μi/μe = 1.
The same correspondence can be established for a magnetic
particle (point B) with μi/μe > 1, εi/εe = 1 and a magnetic
void (point D) with μi/μe < 1, εi/εe = 1.

We can then combine the transformations in Eqs. (11)
and (12) and establish a direct correspondence between the
dielectric particle (point A) and magnetic void (point D), as
well as the magnetic particle (point B) and dielectric void
(point C), shown with a dashed gray line in Fig. 3(a). Such
correspondences describe the transformation of TM modes
given by Eq. (5) into TM modes, and TE modes given by
Eq. (6) into TE modes via ni → ne, ne → ni, which can be
written as

εi

εe
→

(
μi

μe

)−1

,
μi

μe
→

(
εi

εe

)−1

. (13)

Therefore, we call these transformations as quasi-TM-TM and
quasi-TE-TE correspondence, respectively.

The established quasi-TM-TM and quasi-TE-TE corre-
spondence can be used to describe the mode properties of
epsilon-near-zero (ENZ) and mu-near-zero-material (MNZ)
resonant structures through the mode properties of normal
dielectric and magnetic particles. This can be done by using
the fact that electromagnetic response of a dielectric Mie void
is equivalent to an ENZ particle, and of a magnetic Mie void
is equivalent to an MNZ particle, as they are characterized by
the same relative permeabilities and permittivites, εi/εe and
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μi/μe. Figures 3(b) and 3(c) show schematically the direct
mode correspondence between a magnetic particle (point B)
and an ENZ dielectric particle with εi/εe < 1, μi/μe = 1, as
well as the direct mode correspondence between a dielec-
tric particle (point A) and a MNZ particle with μi/μe < 1,
εi/εe = 1.

We also note that the described relation between the
electromagnetic duality, quasi-Babinet principle and quasi-
TE-TE, quasi-TM-TM correspondences become approximate
for nonspherical geometries and structures with material
losses, with the same applicability range as the quasi-Babinet
principle discussed below.

IV. NONSPHERICAL GEOMETRIES

We next analyze the Babinet conditions for a dielectric
cylinder with ni = 4 in air and a cylinder-shaped air void
in an environment with ne = 4 calculating their eigenmode
spectrum. Figure 4 illustrates the mode wavenumber, quality
factor, and field profiles of the first three fundamental modes
of the normal and inverse cylinder structures with m = 1 as
a function of the aspect ratio r/h of radius r and height h.
For numerical calculations, we use the eigenmode solver in

COMSOL Multiphysics©. Unlike spheres, the eigenmodes of
a cylinder have a mixed TE-TM character [48,49], which we
characterize by performing the multipolar decomposition of
the eigenmode’s radiated power into TE and TM contribu-
tions, which are then color-coded in Figs. 4(a), 4(b), 4(d),
and 4(e) (see also Sec. III in the SM [45]). In general, the
reason for the hybridization of eigenmodes is that they are
characterized by the same irreducible representation and are
close in resonance frequency [48].

The quasi-Babinet principle holds well for mode 1, with a
relative difference in wavenumber values below 13% for the
given range of r/h. Importantly, mode 1 exhibits a pure TE
and TM nature for normal and inverse structures, respectively.
The resonant frequencies of modes 2 and 3 avoid a crossing at
r/h � 0.535 showing a clear signature of mode coupling. In
the normal structure, modal interference results in a decrease
in the quality factor of mode 2, and a pronounced peak of the
quality factor of mode 3, signaling the formation of a quasi-
bound state in the continuum [50] of pure TE nature. In the
inverse cylinder, the coupling between the modes is weaker
and the peak in the quality factor is less pronounced, but still
mode 3 becomes a pure TE mode. We note that the observed
(small) increase of quality factor for mode 3 at r/h � 0.535
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FIG. 5. (a)–(c) Effect of material absorption: Dependence of
(a) material refractive index, (b) mode wavenumber Re (nik0R), and
(c) quality factor on resonant wavelength from the visible to near-
infrared range for normal and inverse structures composed of air and
GaAs. The upper right inset depicts the color legend for the ED and
MD modes. The wavelengths of material poles are shown with brown
arrows.

is the first demonstration of the formation of quasibound state
in the continuum in individual void structures. Modes 2 and 3
are characterized by the E1u irreducible representation in the
normal structure, and by E1g in the inverse one [48]. The field
profiles for all modes at the avoided resonance crossing and
away from it are displayed in Figs. 4(c) and 4(f). From the
quality factor behavior and field profiles, we conclude that the
quasi-Babinet principle still holds approximately for r/h <

0.5 and r/h > 0.6, i.e., when the hybrid modes are spectrally
separated. We also show numerically that the quasi-Babinet
principle holds for cubelike structures (see Sec. IV in the SM
[45]).

V. EFFECT OF MATERIAL LOSSES

We next analyze how the material losses affect the range
of applicability of the quasi-Babinet principle. We calculate
the resonant frequencies of fundamental modes for normal
(ni = n + ik) and inverse (ne = n + ik) spherical structures
composed of air and GaAs with realistic dispersion. We use
a custom Matlab code to solve Eqs. (1) and (2) with the mate-
rial permittivity function extended to the complex frequency
plane by fitting to several material poles (see Sec. V in the
SM [45]). Figure 5 displays the material refractive index,
mode wavenumber Re (nik0R), quality factor for MD, and ED

modes of normal and inverse spherical resonators. Insets in
Fig. 5(b) display a zoom into the spectral region, in which a
material pole hybridizes with an optical resonance, resulting
in two disconnected dispersion branches [51].

Figure 5 shows that the quasi-Babinet principle is valid for
the low-loss range, and the complementary modes (normal
ED with inverse MD, and normal MD with inverse ED) have
very close wavenumbers. We see that in the range of high
material losses as well as in the vicinity of material permittiv-
ity function poles, the quasi-Babinet correspondence breaks
down. To understand the underlying reason, we analyze how
the absorption losses change the mode eigenfrequency for
normal and inverse structures using the zeroth-order analytical
expression in Eqs. (3) and (4) (see Sec. VI in the SM [45]).
We find that, while the modes of the normal structure are
affected by the losses in the whole particle volume, the modes
of inverse structures are naturally less sensitive, since their
fields are primarily localized in air.

VI. CONCLUSION

We have established a quasi-Babinet principle that allows
us to predict mode characteristics of dielectric Mie voids from
dielectric Mie resonators and vice versa. We have determined
analytically and numerically the applicability range of the
quasi-Babinet principle depending on the spatial dimension,
geometry, and material losses of the structure. We analyzed
extension of this principle to magnetodielectric structures
and its connection to epsilon-and-mu-near-zero photonics. We
anticipate the developed principle to pave the way toward
smart engineering of nanoscale metadevices comprising ap-
plications in strong light-matter interaction, biosensing, and
quantum information processing.
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