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According to Noether’s theorem, symmetries in a physical system are intertwined with conserved
quantities. These symmetries often determine the system topology, which is made ever more complex
with increased dimensionality. Quasicrystals have neither translational nor global rotational symmetry,
yet they intrinsically inhabit a higher-dimensional space in which symmetry resurfaces. Here, we
discovered topological charge vectors in four dimensions (4D) that govern the real-space topology of 2D
quasicrystals and reveal their inherent conservation laws. We demonstrate control over the topology
in pentagonal plasmonic quasilattices, mapped by both phase-resolved and time-domain near-field
microscopy, showing that their temporal evolution continuously tunes the 2D projections of their distinct
4D topologies. Our work provides a route to experimentally probe the thermodynamic properties of
quasicrystals and topological physics in 4D and above.

T
opology is the study of geometrical ob-
jects and their conserved properties under
continuous deformation such as stretch-
ing, twisting, and bending. The values of
conserved properties, often referred to as

topological charges, can have a profound in-
fluence on the behavior of the system, from
the formation of cosmic objects (1) to the dis-
locations of simple wave interference (2). Topo-
logical analysis has been especially impactful
in the fields of condensed matter physics and
optics, revealing robust transport phenomena
(3, 4) and exotic phase transitions (5, 6) be-
cause of the existence of a topological charge
in energy-momentumspace knownas theChern
number (7). Conversely, real-space topological
charges can be used to control theway that light
interacts with matter (8, 9) or may represent
digital information for storage, processing, and
transfer (10, 11).
Dimensionality greatly influences the topol-

ogy and subsequent topological charges of a
physical system (12–14), producing a larger
variety of phenomena as it increases (15–17).
The search for more complex topologies in
a given physical system led to methods for

artificially increasing system dimensionality
(18–20), creating the field of physics in syn-
thetic dimensions (21). By contrast, quasicrys-
talline systems (22, 23) can naturally have
higher-dimensional topologies (24), resulting
in the generation of topological charge vectors,
as was previously observed in the band struc-
ture of atomic (25) and optical (26) systems.
Because quasicrystals have additional de-

grees of freedom compared with ordinary pe-
riodic structures, they behave as regular crystals
but in a higher-dimensional plane (27–29). Thus,
the topology in this higher-dimensional plane
should affect the real-space structure of quasi-
crystals, making them an ideal platform with
which to examine topological physics in higher
dimensions. However, because topology is
closely linked with the symmetry of the sys-
tem (30), and quasicrystals lack translational
or global rotational symmetry in the phys-
ical plane, the challenge of identifying and
observing their topological charges in real
space remains.

High-dimensional dislocations determine
the topology of quasicrystals

We start by reviewing the relationship between
topological charges and dislocations. The to-
pology of the parameter space associated
with a physical system can be determined by
mapping the changes in the physical param-
eters along a closed loop in real space (31). For
example, a wave exhibiting orbital angular mo-
mentum forms a vortex with a phase singu-
larity at its center, which represents a defect
also known as a dislocation in the parameter
space (i.e., the phase of the wave). By mapping
the change in phase along a loop enclosing
the singularity, completing the loop accumu-
lates a total phase that is an integer multiple
q of 2p. The integer q characterizes the topo-
logical charge of the vortex (32), denoting the

number of times that the phase completes a
unit circle along the loop.
The same dislocation can also be described

from another perspective: To return to the start-
ing phase, one needs to subtract b = 2pq, which
can be thought of as a one-dimensional (1D)
vector. Extending this concept to many dimen-
sions results in dislocation vectors that in turn
can give rise to topological charge vectors. This
point of view is common in crystallography,
where a displacement vector in the crystal, the
Burgers vector, defines the existing dislocation
and the underlying topology of the crystal (31).
There is some similarity between the disloca-
tions in a crystal and those in a wave vortex,
because summing over the atomic lattice vec-
tors while traversing in a closed loop about the
crystal dislocation gives a nontrivial (nonzero)
outcome. We will show how dislocations hold
the key tounderstanding the topological charges
of quasicrystals, which naturally exhibit higher-
dimensional behavior.
Quasicrystals can be represented as a super-

position of waves with different phases (27–29),
from which one can deduce the form of the
possible dislocations. This work focuses on
pentagonal crystals (33–35), the simplest 2D
quasicrystals created by five waves interfer-
ing in a plane (Fig. 1C) and represented by the
function

f ðr→Þ ¼ Re
X5
m¼1

fmj jeifmeik
→

m�r→ ð1Þ

where fmj j; fm; and k
→

m are the amplitude, rela-
tive phase, and wave vector of every wave in
the interference pattern, respectively, and r

→
is

an in-plane position vector. This description is
valid for any pentagonal system provided that
one considers only low-order excitations, where-

in the sum of phases G ¼ X5

m¼1

fm is constant

up to integers of 2p and
X5

m¼1

k
→

m ¼ 0 (28, 36)

(i.e., the wave vectors span a regular pentagon).
Consequently, the form of the dislocation vec-

tor associated with defects in the quasicrystal,
b
→ ¼ b1; b2½ �; b3; b4½ �ð Þ ¼ ðb→phonon; b

→

phasonÞ, also
known as the Burgers vector (37), can be con-
structed solely from the four remaining in-
dependent relative phases fn (28, 29, 36) as
follows:

fn ¼ k
→

n � b
→

phonon þ sin 2p=5ð Þ
sin 4p=5ð Þ k

→

mod 3n;5ð Þ

� b→phason þ G
5

ð2Þ

wheren is an integer with the possible valuesn=
{1,…,4}. The system of equations in Eq. 2 implies
that b

→

phonon represents displacements in the
physical 2D space known as phonons, and
b
→

phason represents displacements in two ad-
ditional degrees of freedom called phasons.
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This representation is consistent with a periodic
4D space with elementary reciprocal vectors

g
→
n ¼ k

→

n

h i
; sin 2p=5ð Þ

sin 4p=5ð Þ k
→

mod 3n;5ð Þ
h i� �

defining the

higher-dimensional space (28, 36). Equation 2
illustrates the inherent higher dimension-
ality of quasicrystals and identifies the two
ways to influence their topology: (i) by in-
dividually engineering the relative phases of
waves comprising the crystal or (ii) by tuning
their sum.

Identifying topological charge vectors
in quasicrystals

From Eq. 2, it is clear that every configuration
of relative phases ϕn will result in some dis-
location vector in the 4D space, affecting the
2D projection of the quasicrystal (38, 39). For
the specific choice fn ¼ 2pnQ

5 ;Q ∈ 0; T1; T2f g
we found, unexpectedly, that the resulting vec-
torsb

→
represent multidimensional topological

charges, or topological charge vectors. Specifi-
cally, they adhere to a vector topological charge
conservation law similar to that of other scalar
systems (7, 40), which takes the form

b
→

Q1 � b
→

Q2 ¼ b
→

Q1�Q2 ð3Þ

where b
→

Q1 ; b
→

Q2 ; b
→

Q2�Q1 are different topological
charge vectors, found by assuming fn ¼ 2pnQ1

5 ,
2pnQ2

5 , and 2pn Q1�Q2�5 Q1�Q2ð Þ=3b cð Þ
5 , respectively,

in Eq. 2. Equation 3 is strictly fulfilled up to
an elementary lattice vector in the emergent

periodic 4D space and has a cyclic dependence
because of the finite number of solutions (40).
See (36) for the full list of vectors fulfilling
Eq. 3 and verification that it indeed persists.
The vector b

→

Q¼0is the trivial vector because
there are only four nontrivial topological charge
vectors according to Eq. 2, yet it is added for
completeness of the point group symmetry of
the system.
A similar requirement on the relative phases

in a periodic or circular 2D system results in
the existence of scalar topological charges,
which are identified as phase singularities in
the time-averaged wave interference pattern
(40). These phase singularities have little mean-
ing in the real-valued function of the crystal
(Eq. 1), which is often used to define a charge
distribution (27–29), but are immensely im-
portant in the analysis of waves (31). Aswe show
experimentally below, such phase singularities
are incapable of identifying the topology of
the system for a quasicrystal, thus requiring the
existence of topological charge vectors in the
higher-dimensional space.
Although the topological charge vectors are

4D, they have only two nonzero components:
one related to b

→

phonon and the physical 2D space
topology and another related to b

→

phason and
the topology in the two additional dimensions
of the quasicrystal. This property, which stems
from the two incommensurate length scales in
our system (28, 29), greatly resembles the ex-
tension of theChernnumber to a two-component

vector in the 4D quantum Hall effect with quasi-
crystals (25, 26).

4D topology of pentagonal
plasmonic quasilattices

We explore the 4D topology described above by
creating a pentagonal quasilattice of surface
plasmon polaritons (SPPs) (41), electromag-
netic surface waves existing at the interface
between metallic and dielectric materials. For
this, we used gold surfaces with pentagonal
coupling slits nanofabricated through focused
ion beam milling (Fig. 1D). Such a system
exhibits the spin-orbit interaction of light (40),
and similar designs were recently used to in-
vestigate a variety of nanophotonic topological
charges (42, 43). The spin-orbit interaction of
light determines the topological charge vector
in the plasmonic quasilattice through a con-
servation law similar to Eq. 3 (36), whereQ1,Q2

andQ2 – Q1 are replaced by physical constants
related to the angular momentum of light, as
in systemswith the same SPP excitationmech-
anism (40, 44).
To fully characterize the topology, we used

two complementary techniques: phase-resolved
scattering scanning near-field optical micros-
copy (SNOM; Fig. 1E) (40, 42, 45) and time-
resolved two-photon photoemission electron
microscopy (2PPE-PEEM; Fig. 1F) (43, 46). 2PPE-
PEEM is capable of recording the deep subcy-
cle temporal evolution of the SPP quasilattice,
which has a cycle time of a few femtoseconds,

Fig. 1. Studying dislocations in quasicrys-
tals and their resultant topological
charges: Concept and implementation.
(A) Close to their ground state, quasicrystals
in pentagonal symmetry can be described
by the interference of five waves, oriented at
angles that are integer multiples of 2p/5.
(B) Implementation of the concept in (A) using
a pentagonal coupling slit carved in a gold
layer, launching electromagnetic surface waves
(SPPs) from each of its edges. (C and D) The
amplitude, phase, and vector properties of
the interference pattern are measured in two
complementary ways: scattering scanning
near-field optical microscopy (s-SNOM), which
is time-averaged (C), and two-photon photo-
emission electron microscopy (2PPE-PEEM),
which is time dependent (D). In s-SNOM,
light is collected by scattering the near field
with a sharp metallic tip, and in 2PPE-PEEM,
electrons are emitted from the sample and
used to image the near field through a short
laser pulse arriving after the initial excitation.
[See (36) for further explanations about
the measurement methods.]
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Fig. 2. Phase-resolved near-field microscopy
of pentagonal plasmonic quasilattices. We
showed that different pentagonal plasmonic
quasilattices are not topologically distinct
in 2D by examining their phase singularities.
(A to C) Amplitude (A) and phase (B) of the out-
of-plane field Ez of three different interference
patterns of SPPs generated by impinging three
different coupling slits with light carrying the
same circular polarization (C). The positions of
the edges making up the coupling slits were
shifted to produce the required relative phases

fn ¼ 2pnQ
5 in Eq. 2, which generate the

distinct topological charge vectors b
→

Q written
above each panel in (C) [R is a characteristic
length in the 4D space of the quasilattices,

ϕ ¼ ð1þ ffiffiffi
5

p Þ=2 is the golden ratio] (40). In
each pattern, the central interference area,
marked by a dashed circle in (A) and (B),
shows the expected phase singularity from the
relative phases, which should characterize the
entire mode. By contrast, the solid circles in
(B) show that all five possible phase singularities
in 5-fold symmetry (–2 ≤ q ≤ 2) appear in each
of the modes, albeit at different locations. One
phase singularity is insufficient for characterizing
the modes in their 2D representation, making
them topologically indistinguishable in 2D. The
imaged area is marked by a light square in each
panel of (C), the location of which varies in
accordance with the shifted position of the SPP
interference pattern.

Fig. 3. Topological charge
conservation in pentagonal
plasmonic quasilattices.
(A) Measured amplitude of
the out-of-plane electric field
Ez, for a coupling slit with
shifted edges such that

fn ¼ 2pn
N (Q ¼ 1). Because

both amplitude and phase
are extracted in the mea-
surement, it is possible to
reconstruct the two in-plane
field components in the cir-
cular basis (E+ and E–)
through Maxwell’s equations
(42). Whereas the out-of-
plane field has a topological

charge vector b
→

z, the two
in-plane field components
have different topological
charge vectors, b

→

þ and b
→

�,
respectively. In the physical
2D plane, this manifests as
a constant difference between the winding of every phase singularity for each field component (examples are marked in every panel by a dotted circle). (B) By
choosing a different value ofϕn ¼ 2pnQ

N through incident polarization or coupling slit design, a different set of topological charge vectors is generated. Conveniently, all

topological charge vectors can be represented in the same plane, because for b
→ ¼ b1; b2½ �; b3; b4½ �ð Þ, only their b2 and b4 values are nonzero. Thus, the topological

charge vectors of each mode form a triangle with a certain area. By performing a line integral through Stokes’ law, keeping the direction of integration constant,
and normalizing by the area of the projected 4D unit cell, the area of each triangle becomes exactly Q. Thus, topological charge conservation for vector pentagonal
quasilattices is identical to an area law conservation.
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whereas SNOMprovides time-averagedmapping
of its amplitude and phase. Both methods have a
sufficient deep-subwavelength spatial resolution.
The symmetry of the measured SPP field in

bothmethods is different (as illustrated in Fig.
1, E and F): SNOMcaptures the time-averaged,
complex field, exhibiting strictly pentagonal
symmetry, whereas 2PPE-PEEM extracts the
time-dependent, real part of the field, result-
ing indecagonal symmetry. Furthermore, SNOM
captures the out-of-plane field component Ez,
whereas in a pump-probe experiment involv-
ing SPPs, 2PPE-PEEM predominantly mea-
sures the in-plane field components Ex and Ey
(47). Both methods, nevertheless, are capable
of extracting the full vector field independent-
ly (42, 43). For more information about our
various sample preparation andmeasurement
protocols, see (36).
The time-averaged out-of-plane field mea-

surements of pentagonal SPP quasilattices (Fig. 2,
A and B) revealed that each lattice contains all
possible phase singularities (i.e., q = –2,–1,0,1,2),
albeit at different locations. Furthermore, as
suggested in (29) and further investigated in
(36), the lattices are locally isomorphic, mean-
ing that a field pattern in one lattice can al-

ways be found in the others. Thus, the lattices
appear to be topologically indistinguishable
in 2D despite being distinguishable in 4D and
having different topological charge vectors (dis-
played above each image in Fig. 2C).
In contrast to the purely scalar fields con-

sidered thus far, SPPs are composed of a 3D
electric field (42, 43). Thus, each of the three
field components is associated with a differ-
ent topological charge vector determined by
a conservation law articulated in (36). This
conservation law is a direct result of Maxwell’s
equations, and relates the topology of the in-
plane rotating fields (i.e., left-circular or right-
circular) to the topology of the out-of-plane
component. Therefore, 2D phase singulari-
ties around the same point appear with dif-
ferent windings in different field components,
as demonstrated through time-averaged mea-
surements and in accordancewith the relation
between their respective values of Q (Fig. 3A).
Combined with topological indistinguishabil-
ity in 2D, this unique vectorial trait changes
the field orientation at any given position with
time, effectively causing vector field features
to disappear at one location and reappear in
another (as demonstrated in movies S1 and S2).

Indistinct as it may be in 2D, the behavior of
SPP quasilattices can be clearly understood in
the 4D higher-dimensional space of quasicrys-
tals, where the topological charge vectors of all
field components form a triangle (Fig. 3B). A
line integral surrounding the area of the triangle
(i.e., using Stokes’ law) gives exactly the value Q
(36). Therefore, the vector nature of SPPs trans-
forms the topological charge conservation in
Eq. 3 into an area conservation law, holding true
for any divergence-free vector field fulfilling sim-
ilar relations to Maxwell’s equations (48, 49).

Controlling the 2D projection of plasmonic
quasilattices with temporal phase

After exploring how the relative phases of the
waves affect the topology of a quasicrystsal, we
then investigated the influence of their sum.
In doing so, we return to Eq. 1, noticing that
it has the same functional form as the time-
dependent solutions of the wave equation.
Thus, one can write the relative phases fm of
any monochromatic system satisfying the wave
equation, e.g., electromagnetic, acoustic, etc.,
in the form fm = am – wt. Here, w is the tem-
poral frequency of the waves, t is the time co-
ordinate, and am is the set of parameters tuning

Fig. 4. Controlling the
2D projection of topo-
logically distinct qua-
silattices with the
temporal phase. We
verified that two plas-
monic quasilattices
are topologically distinct
by measuring their tem-
poral evolution, which
exhibits similar patterns
at different times. To
this end, we examined
two lattices generated by
the same coupling slit.
(A) SEM micrograph of
the coupling slit used for
the time-resolved mea-
surement supporting two
plasmonic quasilattices
with relative phases

fn ¼ 2pnQ
5 , Q = 0,–2,

determined by changing
the handedness of
incident illumination.
(B) Real out-of-plane electric field of a quasilattice with Q = –2, extracted from
a time-resolved PEEM experiment (51). The different accumulated temporal phase
appears above every panel in (B). The dashed square in (A) marks the field
area shown. (C) Same as (B) but with Q = 0. Similar field distributions are marked
by bold frames and appear at different times for different quasilattices, as predicted.
(D and E) Measured (D) and simulated (E) correlation between the two
topologically distinct quasilattices as a function of their respective accumulated
temporal phases. The vertical and horizontal axes represent the accumulated
temporal phase of the field presented in (B) and (C), respectively. Inset in (D) shows
a magnified region of the measurement times presented in (B) and (C), where the

stars mark the coincidents of similar distributions indicated by the bold frames. The
temporal distance between the similar distribution remains the same up to the
temporal resolution of the measurement (manifesting in a phase error of ~0.125p)
and is marked by Dt in the inset of (D). Color bar for both (D) and (E) is shown in the
inset of (E) and represents the value of correlation between images of the two
lattices at various times. The experimental correlation map in (D) greatly depends on
the available field of view and the temporal resolution of the measurement. However,
(E) shows that both effects can be accounted for by the simulation. Correlation
without any such restrictions is given in fig. S2. The dynamics of the full vector field
in (B) and (C) is given in movies S1 and S2, respectively.
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the independent relative phases. For the choice
of am ¼ 2pmQ

5 , Eq. 2 remains the same, but the
sum of all relative phases G becomes exactly
–5wt (36). In this case, the topological charge
vector does not change with G, which relates
directly to the global time-dependent phase
accumulation of the interference pattern. In-
stead, a constant phase factor is added to the
interference, changing the 2D projection of
the quasicrystal in time. Thus, whereas the
time-averaged measurements of SPP quasi-
lattices could not distinguish between latti-
ces with a different topology, a time-dependent
measurement can obtain the necessary infor-
mation to do so.
A corresponding observation of this princi-

ple is presented in Fig. 4. We measured two
topologically distinct SPP lattices at different
times (examples are shown in Fig. 4, B and C)
and correlated the time-resolved measurements
as a function of the time difference (Fig. 4, D
and E). We found that topologically distinct
quasicrystals exhibited a similar real-space
shape at different times [see (36) and fig. S2],
and this time difference remained constant
throughout their temporal evolution [see ex-
planation in (36)]. Therefore, measuring the
quasilattice at certain times allows one to se-
lect specific 2D projections and reveals the rela-
tionship between topological charge vectors
of different quasilattices. Finally, understand-
ing the topology of a quasicrystal made of
interfering waves can only be complete once it
is examined both in a time-averaged and a time-
resolved manner.

Outlook

Our results prove the existence of topological
charge vectors in the higher-dimensional space
of 2D quasicrystals. The quasicrystal field distri-
bution is a projection from higher-dimensional
space and contains information about the higher-
dimensional topology, which wemonitored and
controlled in a model experimental system: the
interference of electromagnetic surface waves
on gold. In principle,many of our results could
be reproduced in other wave systems. There-
fore, we conclude that quasicrystalline wave
interference patterns are a simple and straight-
forward path to examine the topology of phys-
ical systems in higher dimensions.
Because of the pentagonal symmetry that we

investigated, our topological charge vectorsman-
ifest in 4D.However, a higher prime-number sym-
metry provides more degrees of freedom and
more nondegenerate topological charge vectors,
scaling up the dimension of the examined topol-
ogy. Additionally, it is possible that 3D topological
defects such as skyrmions (42, 43) exist in our 2D
quasicrystalline wave interference. Although
skyrmion-like features appear (seemovies S1 and
S2), the boundary of a skyrmion is ill defined in
our system, and thus they do not exist. Neverthe-
less, 4D spatiotemporal skyrmions were recently

found to exist in time-modulated3Dquasicrystal-
line wave interference (50).
Figures 2 and 3 illustrate that the informa-

tion contained within a quasicrystalline inter-
ference pattern is not local; that is, the correct
characterization of its topological charge re-
quiresmeasuring the field in several locations.
This property could benefit security protocols
for the transport of both classical and quantum
information (51) while making the information
more resilient to noise and other interferences
(52). Conversely, topological protection of the
information could be achieved by producing
quasicrystalline interference inside a nonline-
ar medium, creating nonlinear quasilattices
(38, 39).
Although themodel that we presented in Eqs.

1 to 3 is not system specific, it is heavily based
on the model of interfering charge-density
waves that has been used previously to explain
the mechanical and thermodynamic proper-
ties of quasicrystalline materials (27–29). The
correspondence between these models (36)
suggests that the time-dependent phase accu-
mulation of wave interference can be directly
related to the variation of ground-state free
energy in a given quasicrystalline material.
Thus, our results shown in Fig. 4 provide a
simulator exemplifying the way that free en-
ergy compensates for the presence of disloca-
tions in a material. Further experiments can
use this trait to examine the thermodynamics
of quasicrystals under an adiabatic change in
free energy, which is a very difficult task to per-
form by other means.
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